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P. Quintana-Segúı, Observatori de l’Ebre (Universitat Ramon Llull - CSIC), Horta Alta 38,

Roquetes, 43520, Spain. (pquintana@obsebre.es)

S. Herrera, Grupo de Meteorologia, Dpt. of Applied Mathematics and Computer Science,

Universidad de Cantabria (UC), Av. de los Castros s/n, Santander, 39005, Spain. (her-

reras@unican.es)

J. M. Gutiérrez, Grupo de Meteorologia, Instituto de F́ısica de Cantabria (IFCA), CSIC-UC,

Av. de los Castros s/n, Santander, 39005, Spain. (gutierjm@unican.es)

1Universidad de Barcelona, Barcelona,

D R A F T April 27, 2011, 4:25pm D R A F T



X - 2 TURCO ET AL.: TESTING MOS-LIKE DOWNSCALING OVER SPAIN

Abstract. Model Output Statistics (MOS) has been recently proposed4

as a convenient statistical downscaling alternative —as opposed to the stan-5

dard perfect prognosis approach— for Regional Climate Model (RCM) out-6

puts. In this case, the model output for the variable of interest (e.g. precip-7

itation) is directly downscaled/calibrated using observations. In this paper8

we test the performance of a MOS implementation of the popular analog method-9

ology applied to calibrate precipitation outputs over Spain. To this aim, we10

consider the state-of-the-art ERA40-driven RCMs provided by the EU-funded11

ENSEMBLES project and the Spain02 gridded observations dataset, over12

the common period 1961-2000. The MOS analog method improves the rep-13

resentation of the mean regimes, the annual cycle, the frequency and the ex-14

tremes of precipitation for all RCMs, regardless of the region and the model15

reliability (including relatively low-performing models), while preserving the16

daily accuracy. The good performance in different climates of Spain suggest17

the potential transferability of the method to other regions. Furthermore,18

in order to test the robustness of the method in changing climate conditions,19

Spain

2Observatori de l’Ebre (URL-CSIC),

Roquetes, Spain

3Instituto de F́ısica de Cantabria

CSIC-UC, Santander, Spain
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a cross-validation in driest or wettest years was performed. The method im-20

proves the RCM results in both cases, especially in the former.21
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1. Introduction

Global Climate Models (GCM) are basic tools to study and simulate the climate, and to22

obtain future climate projections under different anthropogenic forcing scenarios [Solomon23

et al., 2007]. However, due to their coarse resolution —generally few hundred kilometers—24

and their large biases, they are not suitable for regional studies [Cohen, 1990]. This is es-25

pecially true for Spain, a geographically complex and heterogeneous region characterized26

by a great variability of precipitation regimes [Serrano et al., 1999; Trigo and Palutikof ,27

2001]. Consequently, developing regional climate scenarios is a key problem for climate28

change impact/adaptation studies and has become a strategic topic in national and in-29

ternational climate programs [see, e.g. the WCRP CORDEX initiative, Giorgi et al.,30

2009].31

Usually, two different methodologies have been developed for downscaling GCM simu-32

lations over a region of interest (e.g. Europe). Firstly, dynamical downscaling is based on33

high resolution (e.g. 25 km) limited area models —also called Regional Climate Models34

(RCMs)— which are coupled at the boundaries to the GCM outputs [Giorgi and Mearns ,35

1991]. Secondly, statistical downscaling techniques [Wilby et al., 2004; Benestad et al.,36

2008] are based on statistical models, fitted to historical data to capture the empirical37

relationship between large-scale GCM variables (the predictors, e.g. 500mb geopotential)38

and local variables (the predictands, e.g. precipitation at a given location); these models39

are first trained using reanalysis data —following the Perfect Prognosis (PP) approach—40

and later applied to downscale GCM scenario outputs.41
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Traditionally, statistical downscaling has been used as a substitute for dynamical down-42

scaling, or vice-versa. However, due to the increasing availability of reanalysis-driven RCM43

simulations, produced in projects like ENSEMBLES [van der Linden and Mitchell , 2009],44

some authors have recently suggested the possibility of combining the advantages of the45

two downscaling methodologies. The idea is applying the statistical downscaling directly46

to the RCM outputs following the Model Output Statistics (MOS) —or bias correction—47

approach [see Maraun et al., 2010, and references therein]. In this case, as opposite to48

PP, the predictor is directly the RCM output variable (i.e. the RCM precipitation) which49

is calibrated to match the observed variable (local precipitation at a station or interpo-50

lated grid point). This alternative approach constitutes an advanced calibration method51

for end-users, allowing the calibration of RCM outputs for climate change impact studies52

[the importance of calibration in this context is discussed in several studies Fowler et al.,53

2007; Christensen et al., 2008; Herrera et al., 2010a], and an increase of resolution (when54

high-resolution observations are available in the area of interest). Note that, although55

RCMs provide regional climate details compared to the GCMs, their resolution is still56

too coarse (typically tens of kilometers) for many climate change impact studies [see, e.g.57

Quintana-Segúı et al., 2010].58

In this study we analyze the state-of-the-art ensemble of ten RCMs produced in the59

ENSEMBLES project using a 25km grid, considering the ERA40-driven simulation in60

the control period 1961-2000, and focusing on precipitation over Spain [see Kjellstrm61

et al., 2010, and other papers in the same special issue]. In a recent paper, Herrera et al.62

[2010a] show that some of these models have strong biases and exhibit a poor performance63

when reproducing the mean precipitation regime and annual cycle in this region. In64
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addition, they overestimate the frequency of rainfall and they deficiently represent the65

extreme events. In this paper, these models are statistically post-processed applying66

a downscaling technique based on analogs [Lorenz , 1969] to their precipitation fields,67

following the MOS approach. This study has two main objectives: (1) testing the skill68

of a MOS-like downscaling method for mean and extreme precipitation in a complex69

area (with both Atlantic and Mediterranean climates) at daily scale and (2) evaluating70

the possibility to obtain more homogeneous and calibrated ensembles by improving the71

reliability of the worst-performing RCMs (those with higher biases and larger improving72

potential).73

The study is organized as follows. In Section 2, a short description of the precipitation74

characteristics in Spain is given and the RCM and observational datasets used in the paper75

are described; Section 3 presents the downscaling method used, and Section 4 analyzes76

the validation results. Finally, Section 5 synthesizes the main results and conclusions of77

this study.78

2. Region of Study and Data

The Iberian peninsula —located on the south-west edge Europe, between 36◦ and 44◦N79

and 10◦W and 3◦E— is an important region for precipitation studies for two main reasons.80

Firstly, precipitation plays a major role on water resources and natural hazards in this area81

[Garrote et al., 2007; Llasat , 2009], thus leading to one of the most vulnerable countries to82

water scarcity, droughts and floods in Europe [Kristensen, 2010]. Secondly, its complex83

orography and particular location —at the transition area between extra-tropical and sub-84

tropical influence [Jansá, 1997; Giorgi and Lionello, 2008]— determines a great variety of85

climates with both Atlantic and Mediterranean influences. Thus, precipitation is charac-86
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terized by a complex spatial pattern [Serrano et al., 1999], with a strong seasonal cycle and87

large interannual [Trigo and Palutikof , 2001] and spatial [Rodriguez-Puebla et al., 1998;88

Romero et al., 1998; Martin-Vide, 2004; Rodrigo and Trigo, 2007]) variability. The annual89

precipitation decreases from north-west (with a typical Atlantic precipitation regime) to90

south-east (with a Mediterranean precipitation regime). The north has the largest ac-91

cumulated values (1000-2500 mm/year) with a maximum in winter and rainfall spread92

out over the year. The majority of the central part of the peninsula shaves less than 50093

mm/year. The south-east is characterized by a semiarid climate with very dry condition,94

with areas with less than 100 mm/year. Finally, the Mediterranean coast and part of the95

Ebro basin exhibit bimodal Autumn-Spring maxima with an accumulated annual values96

of less than 700 mm/year, where frequent drought periods alternate to heavy rainfall97

events [Llasat , 2009]. Due to this strong variability, Spain represents a challenge area for98

downscaling studies [Herrera et al., 2010a].99

In the following we describe the ensemble of ten RCM simulations from the ENSEM-100

BLES project, and the Spain02 gridded dataset of interpolated observations.101

2.1. Interpolated Observations: Spain02

The observed data of daily precipitation used in this study is provided by the high-102

resolution (0.2◦ x 0.2◦, approximately 20km x 20 km) gridded dataset Spain02 [Herrera103

et al., 2010b], which is publicly available for research activities. This dataset was produced104

using data from 2756 quality-controlled stations from the Spanish Meteorological Agency105

(AEMET), covering the Iberian Peninsula and the Balearic Islands over the period 1950-106

2008 (Figure 1). This dataset has been used by Herrera et al. [2010a] to evaluate the107
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RCMs described in Sec. 2.2, assessing their performance to reproduce both the mean and108

extreme precipitation regimes.109

2.2. ENSEMBLES RCM dataset

The EU-funded project ENSEMBLES produced an ensemble of regional simulations110

at a 25 km resolution using state-of-the-art RCMs [van der Linden and Mitchell , 2009]111

driven by both ERA40 reanalysis data [Uppala et al., 2005] in a control period, and future112

A1B scenario simulations of different GCMs. In this paper we consider the ERA40-driven113

runs from ten models for the common period 1961-2000 (see Table1). The main advantage114

of these runs is the daily accuracy (or day-to-day correspondence with observations) of115

the reanalysis and, to some extent, of the corresponding RCM simulations (forced at116

the boundaries by the reanalysis). As we shall see in Sec. 4.3, this property is the key117

reason for the successful application of the MOS approach in this context. Moreover, the118

resulting validations is a characteristic of each particular RCM, since the reanalysis is119

a pseudo-observation of the atmosphere (at least in this extratropical region), therefore120

excluding the systematic biases of the global climate models.121

Herrera et al. [2010a] evaluated the mean and extreme precipitation regimes from these122

RCMs over Spain (with the exception of the ICTP model, not available at the time of their123

work) and reported a subset of five models best performing over this region (indicated124

with an asterisk in Table 1). The resulting 5-model ensemble performed better than the125

individual models and than the total ensemble.126

For practical reason, the daily outputs of the RCMs were bilinearly interpolated from127

their original resolution (25km) to the grid defined by Spain02 (0.2◦×0.2◦, 20 km approx-128

imately). This manipulation might decrease the quality of the simulated data; however,129

D R A F T April 27, 2011, 4:25pm D R A F T



TURCO ET AL.: TESTING MOS-LIKE DOWNSCALING OVER SPAIN X - 9

in this case the data will be used as predictor for the downscaling method and thus the130

interpolation does not influence the final results. Of course, if the method were to be used131

to assess the impact of climate change, this interpolation should be avoided.132

3. Methodology: MOS based on Analogs

On the one hand, perfect prognosis (PP) is the most popular and widely used statistical133

downscaling methodology at seasonal and climate change scales [see Benestad et al., 2008,134

and references therein]. In this case, a statistical link is derived from the reanalysis —135

quasi-observations— large scale predictors (e.g. sea level pressure) and the observed local136

predictands (e.g. precipitation) and, then, applied to future simulations from GCMs under137

different forcing scenarios. On the other hand, it has been recently suggested that the138

MOS methodology could be directly applied to the RCM outputs, using a reanalysis-driven139

control period to model, calibrate and validate the methods. In this case, the predictor140

is directly the RCM output variable (i.e. the predicted precipitation) which is corrected141

to match the observed variable. Thus, this alternative methodology may overcome some142

of the known drawbacks of the PP methods: like the underestimation of high intensity143

events [Wilks and Wilby , 1999] and local spatial and temporal variability [Maraun et al.,144

2010]. Besides the PP methods do not necessarily provide consistency between different145

downscaled variables [Wilby and Wigley , 1997].146

Some MOS methods have been recently proposed in the literature to correct RCM147

simulations by an additive term for temperature [Déqué, 2007] or by a scaling factor for148

precipitation [Widmann et al., 2003]. Quantile mapping attempts to correct the whole149

distribution [Déqué, 2007; Piani et al., 2010]. MOS methods are still in a rather premature150

state of development and substantial improvements are currently under development.151
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In this paper, we present a MOS method based on the adaptation of the analog method-152

ology (hereafter referred to as “MOS analog”). This method was first developed for153

weather forecasting [Lorenz , 1969; Obled et al., 2002; Gibergans-Baguena and Llasat , 2007]154

and later applied to climate scales [Zorita et al., 1995]. After that, several climate studies155

were performed using the analog method [see, e.g. Cubasch et al., 1996; Zorita and von156

Storch, 1999; Timbal et al., 2003; Benestad et al., 2008], so it is nowadays a popular and157

widely used technique. The analog method is based on the hypothesis that “analogue”158

weather patterns (predictors) should cause “analogue” local effects (predictands). This159

leads to a simple algorithm to infer the local occurrence associated with a given predictor160

(atmospheric pattern) based on the historical occurrences of a set of analog days (with161

closest predictors). This is simply done by considering the historical local occurrences162

corresponding to the atmospheric patterns closest/analog to the target predictor. The163

main advantages of this method are that (1) it is able to reproduce nonlinear relationship164

between predictors and predictands, (2) it is easy to implement with low computational165

cost, and (3) it is able to reproduce spatially coherent and realistic precipitation patterns.166

The main drawback of the method is that it cannot simulate unobserved weather pat-167

terns, although it can produce accumulated values or frequencies over several days larger168

(or smaller) than the historical values. This limitation is related to the assumption of169

“stationarity” [Wilby et al., 2004], a common weakness of all the downscaling methods170

—the parametrizations of the dynamical models and the statistical relationship between171

predictors and predictands must hold in the projected climate, which cannot be taken for172

granted [Trenberth et al., 2003].— This limitation should be cautiously taken into account173

for climate change studies, although this problem can be mitigated using a long database174
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of observations with a great variety of situations [Zorita and von Storch, 1999] and using175

robust statistical relationships based on a small number of parameters and on a physical176

predictor/predictand relationship [Benestad et al., 2008; Maraun et al., 2010]. This is the177

case of the MOS analog method, where a unique predictor (model precipitation) is used.178

Given an historical training period (with known predictors and predictands) and a179

projection period (with known predictors), the MOS analog downscaling consists of three180

main steps to estimate the corresponding projected predictands:181

1. Selection of an appropriate subgrid within the RCM domain over the area of study,182

capturing the physical scales relevant for the predictand of interest (observed precipitation183

in this case). In our case we consider the 0.2◦ subgrid covering the Iberian peninsula184

described in Sec. 2.2 and consider the predictor pattern defined by the RCM precipitation185

on this grid.186

2. For each predictor pattern from the projection period, the closest historical pat-187

tern (analog) within the training period is computed considering the Euclidean distance188

(according to Matulla et al. [2007] this is a reasonable first choice among the standard189

measures of similarity). A larger number of analogs were also considered, but a single190

analog exhibited the best performance according to the validation metrics considered in191

the study.192

3. Then, the local precipitation projected for the predictand (Spain02 ) is simply ob-193

tained as the historical occurrence of the predictand on the analog day.194

In order to select the predictor domain, different experiments were performed. We195

focused on the Ebro basin (see Figure 1), which is a demanding test for a downscaling196

method due to the great variability of the precipitation of this basin (due to Atlantic197
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and Mediterranean influences). Three predictor domains were considered: the Spain02198

domain (i.e. the Spanish Iberian Peninsula and the Balearic Islands), the Mediterranean199

coast (i.e. the union of the Mediterranean river basins show in Figure 1), and, finally,200

the Ebro basin itself. Several validation experiments were performed using these domains201

with different RCMs and different train/test periods. It came out that the skill was more202

influenced by the different test periods or different RCMs than by the different domains.203

For this reason, the predictor domain for our experiments over the Iberian Peninsula was204

Spain02.205

4. Validation and Results

The skill of the MOS analog method has been evaluated using a cross-validation ap-206

proach, considering reanalysis data and observations within the period 1961-2000. The207

data was split into two subsets, 30 years for model training/calibration and 10 years for208

validation. To test the robustness of the statistical relationship in a changing climate,209

two different test periods were used: The ten wettest years and the ten driest years, re-210

spectively. Since the annual precipitation in Spain does not exhibit any general trend211

[Rı́o et al., 2010], the wettest (driest) years have been identified in the following way:212

The annual total precipitation for each point has been standardized, spatially averaged213

and finally sorted. The resulting wettest (driest) years are given in Table 4. Note that214

cross validation requires that the test and training samples are randomly drawn from the215

population; thus, although the ten wettest (driest) years do not conform a proper test216

sample, our objective is measuring the performance of the method in changing climate217

conditions and, hence the present cross-validation procedure provides a more informative218
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assessment of the downscaling methodology regarding its suitability for future scenario219

simulations.220

Two main approaches have been applied to evaluate the skill of the downscaling [see221

Murphy , 1993, for a description of forecast validation]. Firstly, we compare the simulated222

(both RCM outputs and MOS downscaled ones) and observed climatologies (spatial pat-223

terns) considering standard reliability measures (Sec. 4.1) and the annual cycle (Sec. 4.2).224

Secondly, since the reanalysis-driven RCM simulations acquire certain day-to-day corre-225

spondence with observations, the simulated and observed time series are also compared226

at a grid-point basis using standard accuracy measures (Section 4.3).227

4.1. Reliability of the mean and extreme climates

The ability of RCMs and MOS analog to reproduce the annual climatology (spatial228

pattern) for the precipitation indices shown in Table 3 has been tested. These indices229

were computed working with daily data and are a subset of the standard ETCCDI indices230

characterizing total precipitation, dry and wet spells and extremes [WMO , 2009].231

Simple performance scores (bias, mean absolute error and correlation) were computed232

for the spatial pattern of the annual indices and averaged over the ten year wet (dry)233

validation periods, respectively:234

• ME : Normalized spatial mean error (or bias)

ME =
1

n ·O

n∑
i=1

(Yi −Oi) (1)

• MAE : Normalized spatial mean absolute error

MAE =
1

n ·O

n∑
i=1

|Yi −Oi| (2)
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where Yi and Oi are the simulated and observed indices, respectively, for the i-th grid-235

point (n = 1445), averaged over the ten year period of validation. Note that these values236

are normalized to the spatial mean of the observations O [Bachner et al., 2008].237

• CORR: Spatial correlation calculated by the Spearman rank correlation coefficient.

CORR = 1− 6 ·∑n
i=1D

2
i

n · (n2 − 1)
, (3)

Where Di is the difference in ranks of the i-th data pair (Yi, Oi). Note that the Spearman238

correlation is more robust to outliers and linearity than the classical Pearson correlation.239

These scores were calculated both for the original RCM simulations and for the240

MOS analog downscaled values (ME1 and ME2, respectively, for the first score) and241

the resulting differences were statistically tested for significance (the null hypothesis is242

ME1 −ME2 = 0) applying bootstrap resampling with 1000 realizations, obtaining the243

95% confidence intervals [Efron and Tibshirani , 1993]. Bachner et al. [2008] applied a244

similar test to evaluate the skill differences among RCMs.245

As an illustrative example, and for the sake of simplicity, in Figure 2 we show the246

comparison maps for the KNMI model and the corresponding MOS analog values for the247

wet test period; note that this RCM has been chosen since it is one of the most skillful248

for precipitation in this region [see Herrera et al., 2010a, and Figure 3]. The panels in249

this figure show the annual values of the indices (averaged in the validation period of ten250

years) for the observed grid Spain02 (first column) the MOS analog downscaled values251

(second column) and the regional KNMI simulations (third column); the numbers below252

the figures indicate the correlation (CORR), bias (ME) and mean absolute (MAE) values253

for the MOS and RCM values with regards to the observed ones (an asterisk indicate those254

values where the MOS/RCM has a significantly better performance than the RCM/MOS,255
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respectively, at a 95% level). This figure shows that the MOS downscaled values clearly256

outperform the uncalibrated RCM outputs, with significant differences in most of the257

cases.258

Figure 3 summarizes the verification results for all the models and the scores considered.259

The RCMs have been ranked from 1 to 10 according to the correlation value of total260

precipitation (PRCPTOT ) for the wet period (i.e. according to the first score, in the261

upper left panel of the figure) [this ranking agrees with Herrera et al., 2010a]. The 95%262

confidence interval for each individual score is also shown, as a vertical line displayed263

over the MOS downscaled values (filled circles). Thus, when the RCM values (circles) are264

outside this interval, the differences are statistically significant at a 95% level. The values265

above (or below) the upper (or lower) axis bounds are displayed as grey shaded circles; for266

instance, correlations smaller than 0.5 are not shown in the figure and, hence, cases with267

smaller values are just marked with a grey shaded circle. This figure shows that, overall,268

the same correlation and error patterns are obtained for wet (upper panels) and dry (lower)269

test periods, with slightly better results in the later case. The MOS analog downscaling270

method dramatically improves the RCM results for PRCPTOT , SDII, CWD, R10 and271

R20, with correlation values larger than 0.9 in all cases and with smaller MAEs and272

biases. The improvement is also evident for the extremes RX1DAY and RX5DAY ,273

with correlations larger than 0.8; however, in this case the error and bias improvement is274

smaller than for the previous scores.275

Regarding the ME (bias), even thought the MOS analog tends to underestimate the276

indices studied, it is able to reduce the ME of the RCMs in the dry period —with the277

exception of RX5DAY index,— while it leads to similar or worse ME in the majority of278
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cases for the wet period. The MOS analog downscaling method is also able to improve279

the error (MAE score) for all the RCMs and for all the indices considered, with few280

exceptions for some RCMs in the case of RX5DAY and CWD, considering the wet test281

period. Generally, the MAE of the MOS analog is slightly bigger when it is tested in282

the wettest period. This may be a result of the relatively short training period the MOS283

analog was based on, with a relatively low sampling of the heavy precipitation amount.284

Note that although PRCPTOT is overestimated for most of the RCMs, the precipita-285

tion on wet days (SDII) is underestimated. This problem is due to the overestimation286

of rainfall frequency by RCMs, as they tend to drizzle [see, e.g. Gutowski et al., 2003].287

However, as it is shown in this figure, the MOS analog solves this problem, leading to288

unbiased estimates of both indices (except in the wet test period, where the downscaled289

total precipitation is slightly underestimated).290

The index CDD is the one with worst performance for the MOS analog method, provid-291

ing only a slight improvement over the values of the RCM. In fact, our algorithm is able292

to improve the ME and MAE of the CDD, but not always its correlation (in particular293

in the case of the ITCP model, probably due to the great overestimation of the rainy294

days by this model). As we show in Sec. 4.3, the CDD index is highly sensitive to the295

autocorrelation of the time series and, consequently, to the accuracy of the RCM. This296

should be further investigated by adding temporal constrains in the choice of the analog.297

Overall, the MOS analog method is able to improve the above considered reliability298

scores for all RCMs, thus attaining an appropriate calibration in all cases, regardless of299

their respective skills. This is the main advantage of the MOS analog methodology, based300

on a resampling of the observed space driven by the historical analogs of RCM fields. As301
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we show in Sec. 4.3 this calibration is done preserving the daily accuracy of the RCM302

and, thus, the downscaled output can be considered a calibrated local version of the RCM303

values. This is an important result since it permits to enlarge the ensemble of RCMs304

avoiding discarding those with bad reliability, since they can have a similar accuracy and305

could be calibrated as shown in this work.306

Finally, the results reported in this section show that, although the MOS analog down-307

scaling improved the RCM results in wet and dry periods, the added value in the former308

period is less evident (since it cannot simulate unobserved weather patterns) and, conse-309

quently, it should be cautiously considered in the projection of future climate scenarios.310

4.2. Validation over the annual cycle

As already mentioned, the precipitation in Spain is characterized by a large variability311

in space and time. In particular the Iberian rainfall has a strong seasonal cycle that differs312

considerably among the river basins shown in Fig. 1a. In the previous section we evalu-313

ated the performance of the MOS analog method to represent the annual climatologies of314

different indices. In this section, in order to assess the correspondence of the simulated315

and observed annual cycles, we analyze the performance of the methods in the different316

basins at a monthly basis. A recent study has shown the capability of RCMs to simulate317

the annual precipitation cycle in the different basins, specially using a five-member en-318

semble formed by the best performing RCMs [Herrera et al., 2010a]. In this section we319

also consider this five-model ensemble (indicated by stars in Table 1), but we focus on ex-320

tremes. Thus, we consider the annual cycle of the RX1DAY , i.e. the monthly maximum321

value, averaging the grid point indices at a basin level, thus providing useful information322

for hydrological studies. It is important to underline that the spatial averages smooths323
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the peaks, since the distribution is not uniform over the area; to analyse this effect the324

calculations were repeated considering the standardized (to zero mean and unit variance)325

individual point series, obtaining similar results in qualitatively terms (e.g. the shape of326

the different precipitation regimes). For this reason we show the spatial averaged series327

calculated with the original series, since they provide useful quantitative information.328

Figure 4 considers the wet test period, showing the observed RX1DAY values (black329

line) and the simulated values for the ensemble of RCMs (light shade) and MOS analog330

values (dark shade). For a better comparison, all the plots have the same scale, ranging331

from 0 to 60 mm. The annual cycle is reproduced quite properly by both the RCMs and332

MOS analog downscalings, with a reduced spread (smaller uncertainty) in the later case.333

Similar results have been obtained in the dry test period, or considering the full ensemble334

(not shown). In the Mediterranean basin (Segura, Levante, Ebro, Catalana and Baleares),335

the RX1DAY cycle presents two maximum periods, the major one in autumn (in the336

range of around 20-35 mm) and the secondary in spring (around 15-25 mm), although337

the amounts differ among the basins. This characteristic is also present considering the338

total precipitation instead of the maximum value and it is a representative aspect of the339

Western Mediterranean climatology [Romero et al., 1998]. Here, the RX1DAY values340

are usually due to convective events [Llasat , 2001], leading also to a higher RCM spread341

—note that the convective parametrization schemes are an important source of error in342

RCM simulated precipitation [Hohenegger et al., 2008].— The remaining basins have a343

maximum in winter, with values in the range 20-35 mm, and a minimum in summer, with344

values ranging from 5 mm (Baleares, Guadalquivir and Sur) to 20 mm (North basin).345
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The performance of the MOS analog method to reproduce the observed seasonal cycles346

in the different basins is quite remarkable, with the only exception of the autumn months347

(mainly September) in the Segura and Levante Mediterranean basins, where the series348

show the maximum values (also the maximum spread), which is underestimated by the349

MOS analog. In order to better investigate this aspect, the RX1DAY differences among350

the different RCMs (and the corresponding MOS analog values) and the observed series for351

September have been reported in Fig. 5, for each Mediterranean basin and for the two test352

periods (wet and dry, in rows). The different colors in the figure show relative errors, i.e.,353

the absolute difference of simulated and observed value divided by the observed value. The354

biggest errors appear for the Segura, Levante and Baleares river basins. It is remarkable355

how the MOS analog downscaling method reduces the error of the corresponding RCM356

during the test dry period; however, it has similar or worst performance during the wet357

periods.358

Regarding the ten models analyzed in Fig. 5 in the five Mediterranean basins, ETHZ359

and SMHI are the only ones with errors lower than 50% in all cases. Moreover, DMI360

and KNMI have a single case (both in Segura basin) with errors larger than 50%. There361

is no best RCM for all basins and situations. This variability of the performance of the362

RCMs supports the use of an ensemble of RCM simulations in impact studies, both for363

improving the performance and for estimating the uncertainty. Another consequence is364

that disregarding one RCM because performs poorly in one fixed period in a certain area365

could lead to a loss of valuable information for other periods/areas.366

4.3. Accuracy of the Daily Series
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In this section we test the daily accuracy of RCM simulations and the corresponding367

MOS analog values. To this aim, at each grid box, we computed the relative mean absolute368

error (as in Eq. 1) and the Spearman correlation between the simulated series and the369

observations. Table 4.3 summarizes the results for all models and test periods considered.370

The different performance metrics are provided in columns and the RCMs and test periods371

in rows. This table shows that the MOS analog technique greatly improves the correlation372

and preserves (or slightly improve) the RCM error (MAEr), with smaller spatial variability373

of the results (see, e.g. the MAEr quantities in Table 4.3).374

In order to illustrate the spatial distribution of the scores, for the sake of simplicity we375

only consider here the ETHZ model (see Fig. 6); the numbers above the figure indicate the376

spatial median and the interquartile range (IQR) of the scores considered, as in Table 4.3.377

The best correlation scores for the ETHZ model are obtained in central-south Spain, while378

lower correlation values are along the mountains on the north and the Mediterranean; this379

pattern is common to all the RCMs analyzed, with a west/east decreasing skill. However,380

the MOS analog technique provides a more uniform correlation pattern with low values381

restricted to the North. Considering the two test periods, it can be seen that the MOS382

analog shows lower correlation during the wet period than in the dry one, whereas the383

RCMs do not have this correlation dependence on the test period. Nevertheless, although384

the MOS correlation decreases in the wet period, it is still better than the RCM. This385

improvement is mainly related to ability of the MOS analog to reduce the drizzle days of386

the RCMs. Indeed, considering only the rain days (> 1mm), the correlation pattern is387

similar among the MOS analog and the respective RCMs, with a west to east gradient,388

with values of the same order, around 0.3. Note that aggregating the daily time series389
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at 5 days the correlations (similar values between the MOS and the respective RCM) are390

around 0.65 while considering 10 days they are around 0.70.391

These results are also valid when considering the seasonal series instead of the annual392

ones. Indeed, the measures of accuracy have values of the same order of magnitude, with393

correlations around to 0.65 (0.25/0.30 if only the rain days are considered, with lower394

values in summer).395

Finally, it has been tested how the daily accuracy of the RCMs influence the reliability396

of the MOS analog downscaling method. This was achieved by comparing the original397

MOS downscaled series with several surrogated series obtained applying the MOS method398

to the same test period, but considering different surrogate training periods in which399

the years have been gradually rearranged. The surrogates have been done iteratively by400

randomly swapping an increasing number of years, from 0 (original series) to 30 years, thus401

progressively destroying the accuracy of the RCM in the training period, while keeping the402

seasonal structure. As an illustrative example, and for sake of brevity, in Fig.7 we show the403

results for the ETHZ model, considering the wet test period. The accuracy of the RCM is404

measured as the daily temporal correlation between the RCM training surrogate data and405

the observations; the reliability (spatial MAE) of the RCM in the test period is shown406

by a dashed line in this figure whereas the reliability of the MOS downscaled values (for407

the different surrogate training periods) are marked with circles. Fig.7a shows the results408

for total precipitation (PRCPTOT ), where the reliability of the RCM keeps a constant409

value of 0.23, whereas the MOS analog constantly improves this value up to 0.12 (for the410

original data). Therefore, as the accuracy of the RCM improves, the MOS analog allows411

improving the reliability of the downscaled series. Fig.7b shows the case for consecutive412
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dry days (CDD); in this case, since the variable is strongly related to the autocorrelation413

of the series, it is much more sensitive to the accuracy and an improvement of reliability414

is only obtained for high RCM accuracy values. This analysis gives valuable information415

regarding the minimum RCM accuracy needed for the MOS analog downscaling method416

in order to perform a proper calibration of the RCM, improving the reliability.417

5. Summary and conclusions

In this study we introduced a new Model Output Statistics (MOS) downscaling tech-418

nique based on analogs (MOS analog), and applied it to downscale precipitation in Spain.419

Our main goals were: (1) to test the skill of a MOS-like methodology for downscaling420

RCM simulated precipitation over a complex area and (2) to evaluate the possibility to421

calibrate relatively low performing RCMs using this methodology. To achieve these objec-422

tives we used the state-of-the-art ensemble of ERA40-driven RCM simulations provided423

by the EU-funded ENSEMBLES, as well as a gridded precipitation database developed424

from thousands of quality controlled stations (Spain02 ) for Spain, a region with high spa-425

tial and temporal precipitation variability. We considered ten RCMs over the common426

period 1961-2000 with ERA40-driven boundary conditions.427

The MOS analog method was applied considering the RCM precipitation as the single428

predictor; this variable has been reported in different studies as the most informative for429

precipitation downscaling purposes, but it is avoided in perfect prognosis downscaling430

studies since it is very model dependent (e.g. different parameterizations in different431

models) and, thus, there may be significative differences between the reanalysis and the432

GCMs. This problem does not exist in the MOS setting (the RCM precipitation is used433

both for training and test) allowing us to define a very simple and parsimonious method.434
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One important limitation of the analog method is that it is not able to produce events435

outside those which are present in the historical archive. To test how this limitation affects436

our implementation, all the evaluations were carried out considering two test periods: a437

wet and a dry one.438

One of the main advantages of the method is that it allows improving the reliability439

of the RCMs while preserving (or even improving, e.g. for correlation) their accuracy,440

regardless their own reliability. This is true for both dry and wet periods, although the441

performance of MOS decreases slightly in the latter case. The improvements are very442

good for the mean precipitation indices (e.g. the total precipitation and the intensity of443

precipitation) and also for the frequency (e.g. the consecutive dry days) and the extreme444

indices (e.g. RX1DAY , the maximum precipitation in one day). The ability of the445

method to reproduce the annual cycle of RX1DAY was also tested. It has been found446

that this index is reproduced quite well at the basin scale by the RCMs and that the MOS447

improves the results of the RCMs, reducing the spread of the ensemble. In this regard, the448

method has more difficulties in the Mediterranean basins in autumn, which was expected,449

due to the importance of convective events.450

Finally, the conditions under which the MOS analog improves the reliability of the RCM451

were tested by resampling the training years of the RCMs, i.e. varying the accuracy of452

the model. Generally, as the accuracy of the RCM improves, the MOS analog improves453

the reliability while keeping (errors, e.g. MAE) or improving (correlation) the original ac-454

curacy. Besides, being able to calibrate the RCMs, the MOS analog has other advantages:455

it maintains the spatial coherence of the precipitation fields (which is very important456

for hydrology); it is simple and parsimonious, so it is more robust than other complex457
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methods used in perfect prognosis; and it performs well in the different climates of Spain,458

which gives confidence in the transferability of the method to other regions.459

We conclude that the two objectives of this study were fulfilled. The MOS analog was460

shown to work well in a difficult area as Spain, including in the Mediterranean side and461

it can be used to calibrate relatively low performing RCMs (in terms of reliability). The462

method performed better in the dry period, since, by construction, the method cannot463

reproduce unobserved weather patterns. This limitation must be seriously considered464

when working with future scenarios of precipitation. This limitation is common to all465

statistical downscaling methods [Wilby et al., 2004].466

In the future, we plan to test this method under sub-optimal conditions (using RCMs467

driven by GCM) and to apply this method to future RCM scenarios. In this case, it468

will be necessary to do further analysis of the applicability of our method, e.g. testing469

the validity of the statistical relationship in a surrogate climate as in Frias et al. [2006].470

Finally, we intend to use the future scenarios in hydrological applications.471
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Figure 1. (a) Topography of Spanish Iberian Peninsula and the Balearic Islands as

represented by Spain02 at 0.2◦ x 0.2◦, showing the main river basins: 0. Catalana, 1.

North, 2. Duero, 3. Tajo, 4. Guadiana, 5. Guadalquivir, 6. South, 7. Segura, 8. Levante,

9. Ebro, B. Baleares. (b) Annual precipitation from Spain02 (mm) in the period 1961-

2000. (c) Annual precipitation of Spain02 (mm) in the wettest years and (d) in the driest

years; see Sec. 4 for the definition of the wettest and driest years.
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Table 1. Summary of the RCM simulations nested in ERA40 data produced for the

ENSEMBLES project. The columns are the acronym used in the paper, the institution

running the simulation, the model used and a reference publication. The asterisks indicate

the best performing models in this region according to Herrera et al. [2010a].

Acronym Institution Model Reference

CNRM Centre National de
Recherches Meteorologiques

ALADIN-Climat Radu et al. [2008]

DMI Danish Meteorological In-
stitute

HIRHAM Christensen et al. [2008]

ETHZ(*) Swiss Institute of Technol-
ogy

CLM Jaeger et al. [2008]

KNMI(*) Koninklijk Nederlands Me-
teorologisch Instituut

RACMO Van Meijgaard et al. [2008]

HC(*) Hadley Center/UK MetOf-
fice

HadRM3 Q0 Collins et al. [2006]

ICTP Abdus Salam International
Centre for Theoretical
Physics

RegCM3 Pal et al. [2007]

METNO The Norwegian Meteorolog-
ical Institute

HIRHAM Haugen and Haakensatd [2005]

MPI(*) Max Planck Institute for
Meteorology

M-REMO Jacob [2001]

SMHI Swedish Meteorological and
Hydrological Institute

RCA Kjellstrm et al. [2005]

UCLM(*) Universidad de Castilla la
Mancha

PROMES Sanchez et al. [2004]
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Period Years

Wettest 1996, 1969, 1997, 1979, 1963, 1972, 1977, 1989, 1971 and 1987

Driest 1964, 1998, 1994, 1990, 1970, 1967, 1983, 1973, 1980 and 1981

Table 2. The ten wettest and the ten driest years in Spain within the period 1961-2000.

The years have been obtained by ranking the grid-point standardized spatially averaged

precipitation.

Table 3. Climatic mean and extreme indices for precipitation used in this work (see

also ETCCDI http://cccma.seos.uvic.ca/ETCCDI).

label description units

PRCPTOT total precipitation mm

SDII Mean precipitation amount
on a wet day

mm

R10 number of days with precip-
itation over 10 mm/day

day

R20 number of days with precip-
itation over 20 mm/day

day

RX1DAY maximum precipitation in 1
day

mm

RX5DAY maximum precipitation in 5
days

mm

CDD consecutive dry days ( <
1mm)

day

CWD consecutive wet days ( >
1mm)

day
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)IMNK( MCR20niapS MOS (Analog Method)

RHO 0.90  MAE 0.14* ME −0.07* RHO 0.89  MAE 0.17 ME −0.12

RHO 0.93* MAE 0.27* ME −0.27* RHO 0.84 MAE 0.31 ME 0.30

RHO 0.98* MAE 0.16* ME −0.15 RHO 0.81 MAE 0.19 ME 0.04*

RHO 0.98* MAE 0.17* ME −0.15 RHO 0.86 MAE 0.20 ME −0.10*

RHO 0.96* MAE 0.22* ME −0.19* RHO 0.78 MAE 0.39 ME −0.30

RHO 0.87* MAE 0.16* ME −0.13 RHO 0.66 MAE 0.20 ME −0.12

RHO 0.89* MAE 0.24 ME −0.24 RHO 0.79 MAE 0.22* ME −0.17*

RHO 0.96* MAE 0.08* ME −0.06* RHO 0.78 MAE 0.28 ME −0.28
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Figure 2. Spatial distribution of the observed (left), downscaled (central) and RCM

(right) mean values (averaged over the wet validation period) for the precipitation relia-

bility indices shown in Table 3. The spatial validation scores (correlation and errors) for

the MOS analog and RCM simulated values, w.r.t. the observed values, are given below

the corresponding panels. The asterisks next to the MOS (or RCM) scores indicate those

situations where the score is significantly better (larger for correlation and smaller for

errors) than the one corresponding to the RCM (or MOS), respectively.

D R A F T April 27, 2011, 4:25pm D R A F T



X - 38 TURCO ET AL.: TESTING MOS-LIKE DOWNSCALING OVER SPAIN

0.50

0.60

0.70

0.80

0.90

1.00

PRCPTOT
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

SDII CDD CWD RX1DAY RX5DAY R10 R20

PRCPTOT
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

SDII CDD CWD RX1DAY RX5DAY R10 R20

PRCPTOT
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

SDII CDD CWD RX1DAY RX5DAY R10 R20

C
O

R
R

 (D
ry

 p
er

io
d)

0.50

0.60

0.70

0.80

0.90

1.00

C
O

R
R

 (W
et

 p
er

io
d)

M
AE

 (D
ry

 p
er

io
d)

M
AE

 (W
et

 p
er

io
d)

M
E 

(D
ry

 p
er

io
d)

M
E 

(W
et

 p
er

io
d)

0.00

0.20

0.40

0.60

0.00

0.20

0.40

0.60

-0.60

-0.40

-0.20

0.00

0.20

0.40

0,60

-0.60

-0.40

-0.20

0.00

0.20

0.40

0,60

1. KNMI,  2. UCLM,  3. ETHZ, 4. MPI,  5. METO-HC1,  6. ICTP,  7. METNO,  8. DMI,  9. SMHI,  10. CNRM MOS RCM

Figure 3. Summary of validation results for correlation (CORR), mean error (ME)

and mean absolute error (MAE) for the different indices and validation (wet and dry)

periods. Open circles represent the RCM values and the filled circles downscaled values.

See the running text for more details.
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Figure 4. Seasonal cycle (yearly averaged monthly values) of the spatially averaged

RX1DAY index (in mm) for each river basin (according to Figure 1a). The black line

represents the observed (Spain02 ) climatology. The light shaded band spans the values for

the RCMs while the dark one spans the respective MOS downscaled values. The results

correspond to the wet test period.
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Figure 5. Differences among simulated (MOS as well the respective RCM) and observed

RX1DAY value for the month of September, relative to the observed values. The results

are given for each Mediterranean river basin (according to Figure 1a) and test period (wet

and dry). Red colors represent errors greater than 75%, orange between 50% and 75%,

yellow between 25% and 50%, and white errors less than 25%.
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CORR MAEr

MOS RCM MOS RCM

CNRM DRY 0.70 (0.61/0.75) 0.48 (0.45/0.52) 1.49 (1.38/1.68) 1.84 (1.43/2.25)

WET 0.63 (0.55/0.69) 0.45 (0.40/0.50) 1.34 (1.21/1.46) 1.63 (1.30/1.99)

DMI DRY 0.76 (0.70/0.80) 0.58 (0.51/0.60) 1.24 (1.14/1.37) 1.23 (1.00/1.50)

WET 0.69 (0.64/0.74) 0.59 (0.54/0.63) 1.16 (1.07/1.31) 1.17 (0.95/1.42)

ETHZ DRY 0.76 (0.70/0.80) 0.63 (0.59/0.69) 1.28 (1.18/1.40) 1.27 (1.05/1.53)

WET 0.69 (0.64/0.73) 0.62 (0.58/0.69) 1.20 (1.12/1.34) 1.22 (1.02/1.49)

ICTP DRY 0.74 (0.68/0.78) 0.58 (0.53/0.64) 1.34 (1.24/1.47) 1.70 (1.33/2.16)

WET 0.67 (0.61/0.71) 0.57 (0.51/0.64) 1.22 (1.14/1.36) 1.48 (1.18/1.88)

KNMI DRY 0.76 (0.70/0.80) 0.59 (0.56/0.65) 1.29 (1.17/1.43) 1.27 (1.01/1.48)

WET 0.70 (0.64/0.75) 0.60 (0.55/0.67) 1.16 (1.06/1.30) 1.14 (0.93/1.35)

METNO DRY 0.76 (0.71/0.80) 0.62 (0.58/0.67) 1.23 (1.12/1.39) 1.33 (1.08/1.60)

WET 0.69 (0.63/0.74) 0.61 (0.56/0.66) 1.18 (1.07/1.32) 1.28 (1.05/1.53)

METO-HC1 DRY 0.73 (0.66/0.77) 0.56 (0.53/0.60) 1.36 (1.25/1.53) 1.35 (1.12/1.57)

WET 0.66 (0.60/0.71) 0.55 (0.51/0.60) 1.24 (1.15/1.39) 1.28 (1.06/1.51)

MPI DRY 0.76 (0.71/0.80) 0.59 (0.55/0.61) 1.24 (1.14/1.38) 1.35 (1.10/1.56)

WET 0.70 (0.65/0.75) 0.59 (0.54/0.63) 1.15 (1.06/1.28) 1.27 (1.03/1.48)

SMHI DRY 0.76 (0.71/0.81) 0.61 (0.56/0.67) 1.23 (1.13/1.39) 1.27 (0.97/1.53)

WET 0.70 (0.65/0.75) 0.62 (0.55/0.67) 1.16 (1.07/1.32) 1.18 (0.83/1.45)

UCLM DRY 0.68 (0.61/0.73) 0.54 (0.49/0.60) 1.53 (1.43/1.63) 1.52 (1.30/1.76)

WET 0.63 (0.56/0.68) 0.52 (0.47/0.57) 1.30 (1.23/1.40) 1.34 (1.15/1.58)

Table 4. Accuracy scores for the MOS and RCM methods. Each cell shows the median

and IQR (in parenthesis) of the spatial distribution of the Correlation (CORR) and the

Mean Absolute Error weighted by the observed mean (MAEr), for the RCMs and the

respective MOS, for the wet and dry test period.
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Figure 6. Spearman correlation (CORR) and Mean Absolute error relative to the mean

precipitation (MAEr) comparing the ETHZ model with the MOS analog for the dry test

period (left) and wet test period (right). The values on the top of each map are the

median and the interquartile range (IQR) of the spatial distribution of the corresponding

score.
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Figure 7. Spatial error (MAE) of the precipitation indices (a) PRCPTOT and (b)

CDD for the MOS analog method as a function of the accuracy of the RCM, measured as

the daily temporal correlation of the RCM training surrogate data and the observations.

The dashed lines indicate the reliability (MAE) of the RCM; see running text for more

details.
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