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Abstract In the context of climatic temperature stud-

ies more often than not a time series is affected by

artificial inhomogeneities. To overcome such difficulty

we propose a new simple integral methodology which

promising results point towards not only the detection

of unknown inhomogeneous periods but also to the pos-

sibility of reconstructing the uncertain portion of the

series. It is based on a parsimonious statistical down-

scaling (Multiple Linear Regression) of the large scale

20CR reanalysis data. This method is successfully ap-

plied upon two long-range temperature series from a

couple of centennial observatories (Ebre and Fabra, NE

of Spain) which do not have nearby suitable tempera-

ture series to compare with. Results of trend analysis

point to a clear signal of warming, with a larger rate of

increase for the maximum temperature (respect to the
minimum one), for the more recent decades (respect to

the whole available period) and for the original series

(respect to the reconstructed ones).
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1 Introduction

A homogeneous climate series is defined as a series

whose variations are caused only by changes in weather

and climate (Conrad and Pollak , 1950). Unfortunately,

a time series is often affected by one or more artificial

inhomogeneities. Inhomogeneity may be due to vari-

ous factors: changes in the station environment or in

the station itself (e.g. changing from a manual to an

automated station), instrument malfunction or obser-

vation practices (Aguilar et al., 2003). Some changes

may cause spurious (non-climatic) jumps and/or grad-

ual shifts in the data. Regardless of the type and the

effect of inhomogeneities, the analysis of a nonhomoge-

neous series can be misleading. Consequently, it is cru-

cial to determine, assign and adjust any discontinuities

in the data.

The first source of information about the homo-

geneity of the data is the station metadata, but it is

often incomplete, not readily available or altogether

non-existent. To overcome this difficulty and increase

the amount of time series available for climate stud-

ies, great effort has been made to develop a number of

statistical techniques both to test the homogeneity of

the series and to correct the potential inhomogeneities

detected (Peterson et al., 1998; Ducré-Robitaille et al.,

2003; Reeves et al., 2007). Two main groups of method-

ologies for homogeneity testing exist, (i) absolute tests

(e.g. Wijngaard et al., 2003), when the station is iso-

lated, and (ii) relative tests (e.g. Vincent , 1998; Menne

and Williams, 2009) that use data from neighbouring

stations as a regional climate signal. In this case, a

significant departure of the tested series from the re-

gional climate signal is assumed to be caused by inho-

mogeneities. Note that the relative tests are more sen-

sitive and generally preferred over absolute tests but,
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in contrast, need representative nearby series to be re-

liably applied.

For example, within the framework of the European

Climate Assessment project (ECA, http://eca.knmi.

nl/), Wijngaard et al. (2003) developed a basic homo-

geneity testing protocol which was based on absolute

tests due to the low density of the temperature sta-

tion network at the time that study was conducted

(60 available stations over Europe for the period 1901-

1999). The results of these tests are summarized in

three classes, e.g. a series could be “useful”, “doubt-

ful” or “suspect”. The problem of the homogeneity of

stations in Europe is important, as evidenced by the

fact that with this approach, 94% of the temperature

series are tagged “doubtful” or “suspect”.

As an alternative approach when there are no neigh-

bouring stations, one can use the reanalysis data as a

background field against which other time series can

be compared (Kalnay et al., 2006; Pielke et al., 2007a;

Haimberger , 2007; Dee et al., 2011). However, three

main limitations could affect the direct use of reanalysis

as a tool to detect inhomogeneities in a local temper-

ature time series. Firstly, the majority of available re-

analysis (e.g. ECMWF 40 Year Reanalysis: 1957-2002,

Uppala et al., 2005; Japanese 25-year Reanalysis: 1979-

2004, Onogi et al., 2007; NCEP/NCAR Reanalysis I:

1948-present, Kalnay et al., 1996) cover only the second

half of the twentieth century. Secondly, these reanaly-

sis data may suffer from related changes in the obser-

vational network (e.g. at the beginning of the satellite

era, Sturaro, 2003; Bengtsson et al., 2004). And thirdly,

their coarse resolution (around the degree order in lat-

itude and longitude) is unsuitable to perform compar-

isons with local station time series.

The first and second difficulties can be overcomed

by using the recently developed NOAA-CIRES 20th

Century Reanalysis V2 (20CR) which spans from 1871

to the present. 20CR used a state-of-the-art data as-

similation system and surface pressure observations to

generate an atmospheric global dataset. Note that this

reanalysis shows high skill for the extratropical tropo-

spheric circulation in the northern hemisphere (Compo

et al., 2006). Since only sea level pressure is assimilated,

this reanalysis may suffer less than previous reanaly-

sis from some of the most evident discontinuity due

to the time-changing observational network, although

some concerns have been risen recently about its ho-

mogeneity (Ferguson and Villarini , 2012) in the early

part of last century. Finally, the statistical downscaling

methodology usually implemented in regional climate

studies (Wilby et al., 2004; Benestad et al., 2008), is

able to bridge the scale-gap.

In this study we present a new approach applying a

multiple pointwise linear regression (hereafter, MLR),

fitted to historical data to capture the empirical re-

lationship between large-scale 20CR variables and ob-

served temperature. While the application of the MLR

method is fairly standard in the context of the gen-

eration of climate change scenarios (see, e.g. Maraun

et al., 2010), as far as the authors know, its applica-

tion as a downscaling method to test inhomogeneities

and reconstruct series is new. Indeed, there are simi-

lar approaches, such as one based on Proxy Surrogate

Reconstruction (PSG) that uses climate model simu-

lations combined with several proxy and instrumen-

tal data (Graham et al., 2007; Franke et al., 2010) or

the MLR technique developed by Vincent (1998), but

they use not MLR-downscaling neither reanalysis fields

as a tool to identify inhomogeneities in local time se-

ries. Furthermore, several authors (e.g. Kalnay and Cai ,

2003; Pielke et al., 2007b,a; Fall et al., 2010) compare

reanalysis fields to observation using the “observation

minus reanalysis” (OMR) approach, but with the main

objective of trend analysis and attribution.

Our technique is carefully tested with temperature

time series from two stations of the North-East of the

Iberian Peninsula: Ebre and Fabra centennial observa-

tories which are regarded as high quality stations in

the context of Spanish climate studies. Finally, we an-

alyzed the trend of the original and the reconstructed

time series.

This paper is organized as follows: section 2 is a

comprehensive description of the data used in the study;

section 3 presents the implementation framework and

the MLR; in section 4, the MLR is first tested in the

period without discontinuities and then, applied to re-

produce the doubtful periods; finally, the original and

reconstructed time series are analysed. Section 5 sum-

marises the main results.

2 Data description and analysis

2.1 Stations

In this study we use annually averaged daily tempera-

ture time series from two high quality stations in Cat-

alonia (Figure 1a), Fabra Observatory (close to Barcelona,

lat. 41.42◦N, long. 2.12◦E and 411 m amsl) and Ebre

Observatory (Roquetes, close to Tortosa, lat. 40.82◦N,

long. 0.49◦E and 51 m amsl). Both series span over al-

most a century (Fabra, 1913–2008; Ebre, 1905-2008),

although during the Spanish Civil War the measure-

ments were interrupted in the Ebre Observatory for two

years, 1938-1939. There are three main reasons for this

choice of stations:
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1. The two observatories are reference stations in Span-

ish climate studies (present in the ECA database,

http://eca.knmi.nl/) whose temperature series are

used, for example, in the report of climatic change

in Catalonia (Llebot , 2010).

2. In these periods there is no lack of data and meta-

data is readily available (Prohom and Herrero, 2008;

Prohom Duran et al., 2009; Segúı-Grau, 2003). Note

that both observatories are centennial sites devoted

to geophysical research and that atmospheric weather

variables have been regularly measured there since

their foundation (Curto et al., 2009).

3. Both stations are also interesting because of the on-

going controversy over the attribution of detected

inhomogeneities to the influence of non-climatic fac-

tors or natural phenomena such as volcanic eruption

(see Toreti et al., 2010, and reference therein).

The available metadata indicate that at the Fabra

Observatory there have been two changes of thermome-

ter, in 1921 and in 1961, along with the use of a non-

homologated meteorological shelter during the period

1978-1983 (Prohom Duran et al., 2009). At the Ebre

Observatory there is some information about thermome-

ter replacement and a change of position of the station

(of around 4 meters), but the time of these changes is

unspecified (Segúı-Grau, 2003). Probably this replace-

ment has taken place before the 40’s; besides, during

the suspect period that will be detailed below, there is

no change in the station or in its surroundings (G. Solé,

personal communication).

To better illustrate the characteristics of the series,

a set of indices is calculated. This set was proposed by

Wijngaard et al. (2003) and consists of: annual aver-

age maximum temperature, Tmax; annual average min-

imum temperature, Tmin; annual average diurnal tem-

perature range, DTR=Tmax-Tmin; annual average of

day-to-day difference (indicated with the suffix i) of

DTR, i.e. vDTR=DTRi-DTRi+1.

The use of these variables enables us to retain in-

formation on phenomena and sources of inhomogeneity

that act upon different aspects of temperature. There-

fore, by using this set of tests and variables, four ways of

possible inhomogeneity can be explored: diurnal, noc-

turnal, day-night relationship, day-to-day/day-night re-

lationship. For example, theDTR variable is often more

sensitive to the tests of homogeneity, because changes

due to station relocation or measurement techniques are

generally related to radiation, with different influences

on the maximum or minimum temperature. This is ap-

parent in Figure 2, which shows the evolution of Tmax,

Tmin and DTR for the Fabra Observatory (vDTR does

not show any trend or strange behaviour so, for the sake

of brevity, is not displayed). In the case of DTR, there

(a) Predictand domain
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Fig. 1 (a) Region of study (North-East of Spain) and po-
sition of the two observatories (Ebre, close to Tortosa and
Fabra, close to Barcelona). (b) Predictor domains. Large do-
main: simple dots. Medium domain: circled dots. Small do-
main: squared circled dots. Figure 1a zooms on the small
domain.

is an odd peak around the early eighties, which can be

linked to the period 1978-1983 when the thermometer

was in a non-homologated meteorological shelter.

Figure 2 also shows the evolution of Tmax, Tmin

and DTR for the Ebre Observatory (again in this case

the vDTR does not show any particular behaviour and

is not displayed). In the case of Ebre, DTR shows a

kind of strange behavior around the late eighties-early

nineties, in the middle of a global positive trend.

Yet there are no documented variations in neither

the station instrumentation nor its environment which

could explain that particular behavior. So far then, we

can establish a couple of apparent, hereafter called “sus-

pect”, periods of inhomogeneity: 1978-1983 for Fabra

Observatory and 1986-1992 for Ebre Observatory.

Although there is always some degree of subjectivity

in that choice, these “suspect” periods are also hinted
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Years
1920 1940 1960 1980 2000

16

17

18

19

20

21

Years
1920 1940 1960 1980 2000

9.5

10

10.5

11

11.5

12

12.5

13

T
(°
C)

Years
1920 1940 1960 1980 2000

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Fabra
Tm

ax
Tm

in
D

TR
Ebre

T
(⁰

C
)

T
(⁰

C
)

T
(⁰

C
)

T
(⁰

C
)

T
(⁰

C
)

T
(⁰

C
)

Years

Years

Years

Fig. 2 Evolution of Tmax (top), Tmin (center) and DTR (bottom) for Fabra (left) and Ebre (right) Observatories. The
anomalous periods are highlighted with vertical dotted lines.

by the set of four homogeneity tests applied to Tmax,

Tmin, DTR and vDTR following the protocol of Wi-

jngaard et al. (2003): the Normal Standard Homogene-

ity Test (SNHT, Alexandersson, 1986); the Buishand

Range test (BHR, Buishand , 1982); the Pettitt test

(PET, Pettitt , 1979); and the Von Neumann ratio test

(VON, Von Neumann, 1941).

However, there are some limitations to this approach:

firstly, absolute homogeneity tests can detect inhomo-

geneities but cannot confirm their type, that is, to con-

firm which are natural or non-natural; secondly, the po-

sitioning of the year of rupture (and sometimes the re-

sults of the tests themselves) depends on the length of

the series (Peterson et al., 1998), so that the timing of

resulting break-points is indicative.

As we can see in Table 1, each of the applied tests

shows that all the time series are inhomogeneous (ex-

cept Ebre Tmin in the SNHT case). Note that several

break-point years lie around the “suspect” periods. At

Ebre, there are also some break-point years within the

60s. However, in this case, we do not have any metadata

that would suggest any artificial changes. Finally, the

two changes of thermometer in 1921 and 1961 at Fabra

are not highlighted by the homogeneity tests (except for

vDTR), because these may have caused smaller shifts

than those caused by the use of a non-homologated me-
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teorological shelter. One must bear in mind that the ho-

mogeneity tests (SNHT and PET) only give the year of

the biggest shift in the series. These break-point years

are further considered in Sec. 4.4.

2.2 Reanalysis

In this work we have used 20CR reanalysis as a source

of atmospheric information (Compo et al., 2011). To

bridge the gap between the global scale and local ob-

servations we have applied a downscaling methodology

which is described in section 3.

The candidate predictors in this study are the an-

nual mean values of sea level pressure, SLP , air tem-

peratures at 850 hPa, T850, specific humidity at 700

hPa, R700, and the temperature at 2 meters , T2m.

This choice is consistent with several studies that have

analyzed the predictor sensitivity in a temperature sta-

tistical downscaling method (e.g. Huth, 1999; Timbal

et al., 2003; Fowler et al., 2007; Timbal et al., 2009).

Several sensitivity tests will be performed to find the

best predictor(s) combination (see section 3.2). Besides

this, the large-scale predictors are defined on a 2◦ × 2◦

grid extending through 3 candidate domains, which are

depicted in Figure 1b,

– Small domain: from 40◦ to 44◦N and from 0◦ to 4◦E.

It covers the North-East of Spain and the nearby

Mediterranean.

– Medium domain: from 34◦ to 50◦N and from 6◦W

to 10◦E. It covers Western Europe and the western

Mediterranean.

– Large domain: from 30◦ to 60◦N and from 30◦W

to 20◦E. It covers most of Europe and the adjacent

part of the Atlantic Ocean.

The following model calibration shows the best pre-

dictor combination and the best domain.

3 Methodology

3.1 Implementation framework

In this section the general strategy to implement the

MLR as a homogeneity test is described. It consists in

the following steps:

1. In-sample model selection. In this step we select the

model using all of the reliable part of the series (i.e.

the entire series excluding the “suspect period”).

The implicit question is: what are the best statis-

tical model parameters?

2. Out-of-sample test (Figure 3). In this step we want

to assess whether the statistical model is capable

of reproducing the “reliable” parts of the series by

means of a cross-validation (see Section. 3.2 for more

details). Here the question is: can the statistical

model reproduce the series?

3. Testing the “suspect period” (Figure 4a). In this

step we reproduce the temperature in the “suspect

period” using all the remaining years to train the

statistical model. Here the question is: is the suspect

period anomalous?

4. Testing an unknown “suspect period” (Figure 4b).

In this step we systematically apply the statistical

method reproducing a time-moving-window as if the

“anomalous period” was unknown. Here the ques-

tion is: which is the anomalous period?

Fig. 3 A schematic view of out of sample test that follows
the leave-one-out cross-validation approach. Iteratively, all
the single samples from the original sample set are used as
the test data, and the remaining samples as the training data.
Note that the “anomalous period” is excluded from the vali-
dation test.

3.2 Statistical downscaling model

The statistical downscaling model we have implemented

is the multiple linear regression (MLR). We have se-

lected this model due to its simplicity and good per-

formance (Benestad et al., 2008), even though we are
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Table 1 Results of the SNHT, BHR, PET and VON homogeneity tests applied to the Fabra and Ebre annually averaged
daily temperature series for the respective periods 1914-2008 and 1905-2008. The homogeneity test (pvalue ≤ 0.05) is shown
for each test along with the year in which a break is detected by the SNHT and PET tests.

Fabra Break Year (SNHT) Break Year (PET) Homog.? (BHR,PET,VON) Homog.? (SNHT)
Tmax 1981 1979 No No
Tmin 1986 1986 No No
DTR 1973 1973 No No
vDTR 1962 1962 No No
Ebre Break Year (SNHT) Break Year (PET) Homog.? (BHR,PET,VON) Homog.? (SNHT)
Tmax 1978 1958 No No
Tmin 1986 1982 No Yes
DTR 1970 1958 No No
vDTR 1960 1956 No No

Fig. 4 A schematic view of two approaches to test the “sus-
pect” periods. The first consists in a user-defined “suspect
period”, while the second is like a cross validation in which,
iteratively, all the potential “suspect periods” from the orig-
inal sample set are used as the test data, and the remaining
samples as the training data.

aware the relationship predictor-predictand may not be

an exact linear approximation. An extensive analysis of

the MLR methods are provided by Huth (2002). The

simplest MLR has the form:

Yi = β0 +

p∑
j=1

βjXi,j + εi (1)

where, for the ith year, Yi is the response variable

(Tmin, Tmax and DTR, at Fabra or Ebre station), Xi,1,

. . .,Xi,p are p predictors (see Section 2.2), and εi is the

residual term. The quantities β0,. . .,βp are unknown

coefficients, whose values are determined by ordinary

least-squares regression. Different variables (see section

2.2) have been tested as predictors and, to avoid the

possible collinearity among them, a stepwise regression

was performed (Wilks, 2006). This method consists in

systematically testing the importance of all potential

predictors, adding and removing terms based on their

statistical significance (we fixed the level at 5%). Each

of the final regression models is the simplest empiri-

cal model with the greatest explanatory power. Two

stepwise regressions have been evaluated: (1) stepwise

screening of the twenty Principal Components (PCs,

more than 99% of explained variance) of the predictor

variable(s), (2) stepwise screening of gridpoint values.

For the stepwise regression using principal components,

we have carried out several tests with different numbers

of PCs, resulting in minor difference. So we set in twenty

the number of PCs to be taken into account. Note that

this choice is reasonable also consider the study of Huth

(2002).

The performance of the model was assessed consid-

ering the explained variance (R2) and the error vari-

ance defined as the mean square error (s2). Finally, the

residuals have been tested, with the result that the as-

sumption of residual Gaussianity and zero temporal au-

tocorrelation cannot be refused (pvalue ≤ 0.05).

It is important to verify the ability of the linear

model to perform out-of-sample prediction, i.e. to re-

produce the local variable from the knowledge of cli-

matic data outside the period used to test the model.

The out-of-sample prediction involves determining the

model parameters on one subset of the data (training

set), and validating the prediction on the other (testing

set). Here a cross-validation is applied (Von Storch and

Zwiers, 1999), in which a moving window of 1 year is

used as the validation data, and the remaining obser-

vations as the training data (Figure 3). For example,

considering the Fabra series, the first test year is 1914,

and the empirical model is calibrated over the period

1915-2008 excluding the suspect 6 years (1978-1983);

the second test year is 1915 and is trained with the

complementary years (again, excluding the suspect 6

years), and so on. Consequently, a total of 89 (equal to

the total length of the series, i.e. 95, minus the suspect

6 years) test periods were considered.
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To estimate the uncertainty of the out-of-sample

test, we have followed the methodology proposed by

Calmanti et al. (2007). The practical implementation

of this method is summarized here.

1. The residual variance of the calibration period is

calculated;

2. Then, 1000 white stochastic series are generated,

with variance equal to that calculated previously;

3. Finally the stochastic series are added to the pre-

dicted model values, generating an ensemble of 1000

downscaled series.

4 Results

The results are presented following the implementa-

tion framework described in Section 3. Furthermore the

trend of the original and reconstructed series is studied.

4.1 In-sample model selection

In this section we select the model, i.e. we evaluate sev-

eral combination of methods (e.g. stepwise regression

using principal components, PCs, or using grid-point

values), predictor variables (e.g. circulation and/or tem-

perature variables) and domains. The objective in this

section is to assess the best setting of the model to

reproduce the series in the period without doubtful

discontinuities. Table 2 resumes the sensitivity tests

carried out. Although all combination were tested (3

predictor sets x 2 methods x 3 domains), for sake of

brevity only the most relevant experiments are shown

here. Note that for this analysis we have considered the

Ebre station for the period 1940-2008, since the years

1938-1939 are missing.

Table 2 Sensitivity tests for the in-sample calibration

Exp. Predictors Domain Regression
Exp1 SLP ,T850,R700 Large ’PCs’
Exp2 SLP ,T850 Large ’PCs’
Exp3 T2m Large ’PCs’
Exp4 SLP ,T850,R700 Large ’Gridpoints’
Exp5 SLP ,T850 Large ’Gridpoints’
Exp6 T2m Large ’Gridpoints’
Exp7 SLP ,T850,R700 Medium ’Gridpoints’
Exp8 SLP ,T850 Medium ’Gridpoints’
Exp9 T2m Medium ’Gridpoints’
Exp10 SLP ,T850,R700 Small ’Gridpoints’
Exp11 SLP ,T850 Small ’Gridpoints’
Exp12 T2m Small ’Gridpoints’

The results of the sensitivity tests are reported in

Tables 3 and 4. First of all, the in-sample performances

are quite good, with explained variance over 75% in 21

cases out of 36. Generally, the DTR has the lowest R2.

It is apparent that the stepwise regression using grid-

point values (experiments 4-6) performs better than the

stepwise regression using principal components (exper-

iments from 1 to 3). Among the different set of predic-

tors, the inclusion of humidity (experiments 1-4) im-

proves the results, while similar performances have been

obtained using the T2m alone. These results, where the

pointwise regression performs better and the inclusion

of humidity predictors enhances the effectiveness of the

method, are coherent with the studies of Huth (2002)

and Timbal et al. (2009).

Table 3 Sensitivity tests for different sets of predictors (con-
sidering the large domain) and statistical models as reported
in Table 2. Results for the Fabra and Ebre stations. The
model performances are estimated by the explained variance
(R2) and the error variance (s2). The bolted results highlight
the performance of the method implemented.

Fabra R2, s2 (Tmax) R2, s2 (Tmin) R2, s2 (DTR)
Exp1 75, 0.18 84, 0.07 34, 0.08
Exp2 73, 0.19 79, 0.09 26, 0.09
Exp3 79, 0.15 90, 0.05 38, 0.08
Exp4 87, 0.10 88, 0.05 68, 0.04
Exp5 85, 0.19 88, 0.05 56, 0.06
Exp6 86, 0.10 91, 0.04 55, 0.06
Ebre R2, s2 (Tmax) R2, s2 (Tmin) R2, s2 (DTR)
Exp1 68, 0.25 69, 0.08 48, 0.19
Exp2 75, 0.20 69, 0.08 59, 0.15
Exp3 75, 0.19 77, 0.06 65, 0.13
Exp4 85, 0.12 78, 0.06 84, 0.07
Exp5 79, 0.16 69, 0.08 60, 0.14
Exp6 77, 0.17 92, 0.02 83, 0.07

Table 4 summarises the experiments with the point-

wise regression applied with different predictor domains.

Note that experiments 4-6 in table 3 use the same method

applied in the experiments of table 4 but consider a

larger domain, which generally shows the best perfor-

mance.

The overall conclusion from these sensitivity tests

is that the model presents good performance when it is

implemented with this settings:

– method: stepwise regression using gridpoint values;

– predictors: SLP , T850, R700;

– domain: large;

As noted by Huth (2002), the stepwise regression

using gridpoint values performs better than the one us-

ing principal components at stations where local drivers

such as particular topography have an important role,

like is the case of the stations analysed here. The rea-

son could be that the use of gridpoint values allows
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Table 4 Sensitivity tests for different sets of predictors and
domains as reported in table 2. The statistical method is the
pointwise regression. Results for the Fabra and Ebre stations.
The model performances are estimated by the explained vari-
ance (R2) and the error variance (s2).

Fabra R2, s2 (Tmax) R2, s2 (Tmin) R2, s2 (DTR)
Exp7 79, 0.16 86, 0.06 45, 0.07
Exp8 78, 0.16 86, 0.06 31, 0.85
Exp9 83, 1.21 90, 0.04 51, 0.06
Exp10 69, 0.23 78, 0.09 22, 0.09
Exp11 69, 0.23 79, 0.09 22, 0.09
Exp12 75, 0.18 85, 0.06 13, 0.10
Ebre R2, s2 (Tmax) R2, s2 (Tmin) R2, s2 (DTR)
Exp7 69, 0.23 72, 0.07 65, 0.13
Exp8 69, 0.23 69, 0.08 61, 0.14
Exp9 76, 0.18 86, 0.04 65, 0.13
Exp10 63, 0.28 89, 0.08 33, 0.23
Exp11 63, 0.28 64, 0.09 33, 0.23
Exp12 47, 0.38 75, 0.06 75, 0.32

some of the local peculiarities to be explained by the

value of a single (or a few) grid-point(s) specifically se-

lected for the site thus providing the best fit. Regard-

ing the predictors, although the combination of SLP ,

T850, R700 performs similarly to the MLR which use

the T2m alone, the former set was chosen since the

free-atmosphere variables are prognostic, and, in prin-

ciple, more reliable than diagnostic variables, such as

T2m. Finally, as expected, the largest domain shows

the best performance. In fact, the main component of

temperature at annual scale is presumably governed by

large circulation systems (Benestad et al., 2008). Con-

sequently, in the next sections we applied the statistical

model with the above parameters.

4.2 Out-of-sample test

In this section we want to answer the question: is the

model able to reproduce the homogeneous part of the

series? To achieve this objective, we have applied the

leave-one-out cross validation described in Section 3.2.

Figure 5 shows the out-of-sample validation for the

Ebre and Fabra series, respectively. The “suspect” pe-

riods are not shown, in order to focus on the remaining

part, i.e. the “reliable” one. These figures show the me-

dian of the ensemble of the 1000 random realizations to-

gether with the 2.5th and the 97.5th percentiles on the

ensemble of out-of-sample test. With very rare excep-

tions, the observed data fall inside the ensemble bands.

Note that the average error is around ±5% of the an-

nual value. These results suggest that this methodology

is suitable to reconstruct the local temperature series.

Figure 5 also shows the reconstruction of the gaps in

the Ebre series.

For the sake of brevity, only the selected model re-

sults are shown here, but several models (with different

predictor combination) were tested. We have seen that

while the models selected in the in-sample calibration

perform correctly even in out-of-sample mode, the per-

formance of the models that consider various combina-

tions of only two predictors are not satisfactory.

4.3 Testing the “suspect” periods

In the previous sections we have calibrated the statis-

tical model and we have showed that, within certain

limits, it is able to reproduce the observed series. Here

we test the statistical model in the “suspect” periods.

Figure 6 shows the out-of-sample validation for the

Ebre and Fabra series, including the “suspect” periods,

focusing on the relevant part of the series (i.e. around

the “suspect” periods). For the Ebre observatory, the

strange behavior stays inside (or, except for one year,

barely exceeds) the uncertainty limits, so the nature

of this anomalous period remains unclear. Whereas the

Fabra series shows clearly that the odd peak in the

DTR series is far beyond the error bands of the method,

suggesting the artificial origin of the inhomogeneity.

Note that the Tmax series in the anomalous period is

close to the upper error band, whereas the Tmin is be-

low the lower error band. Finally it is apparent that the

DTR magnifies the less evident inhomogeneity with the

Tmax and Tmin series.

4.4 Test an unknown “suspect period”

The last test performed is the cross validation using

a time windows of 5 years for the Fabra series (1914-

2008) and for the Ebro series (1905-2004). These values

were chosen in order to divide the total duration of the

series (95 and 100 years, respectively) into equal parts.

Obviously, if we do not exclude an anomalous part of

the training period, the performance of the model may

worsen. However, Figure 7 (to avoid repetition we show

only theDTR of both stations) confirms that this method-

ology is able to detect the anomalous part of the Fabra

series. The result does not change for the Ebre series

either: Figure 7 indicates that the “suspect” period falls

inside the error bands. Furthermore, the first years of

the series (up to around 1920) are close to the lower

limit of the error band. This result suggests that the

early years of this series (up around the ’20s), in which

there was a shift of the station (unfortunately the date

is unknown) are ”suspect”. Thus, in the following trend

analysis we have reconstructed the anomalous part of
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Fig. 5 Out-of-sample validation for Tmax (top), Tmin (central) and DTR (bottom) series of Fabra (left) and Ebre (right)
observatories. The solid line with filled black points represents the data. The dotted line is the median of 1000 different out-
of-sample predictions, whereas the grey bands indicate the 2.5th and 97.5th percentiles of these 1000 values. See the running
text for more details.

the Fabra station and the periods 1905-1920 and 1938-

1939 (the missing years) for the Ebre observatory.

Finally note that no other anomalous period / break-

point years are detected. This suggests that the other

changes (like the two changes of thermometer in 1921

and 1961 at Fabra Observatory) have probably caused

relatively smaller shifts.

4.5 Trend analysis results

Already by visual inspection of Fig. 1 and Fig. 5, we

observe that the annual series of Tmax, Tmin and DTR

show a positive trend. Note that for all the series, the

highest values are in the latest decades. We applied the

Mann-Kendall test to both observatories, for the origi-
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Fig. 6 Testing the “suspect period”. Results for Tmax (top), Tmin (central) and DTR (bottom) series of Fabra (left) and
Ebre (right) observatories. The solid line with filled black points represents the data. The dotted line is the median of 1000
different out-of-sample predictions, whereas the grey bands indicate the 2.5th and 97.5th percentiles of these 1000 values. The
“suspect periods” are delimitated by vertical dashed lines.

nal series and for the reconstructed ones (according to

the Sec. 4.4). This trend analysis confirms significant

positive trends for both stations (Table 5). In addition

to analyze the entire period of the records, we also ana-

lyze the series over the period 1950-2008, since the early

20th of both instrumental and reanalysis data should be

taken with caution. Indeed, some concerns about the

homogeneity in the first part of the 20th Century of

20CR could be raised (Ferguson and Villarini , 2012).

Therefore, even though our experiment proved to be in

accordance with the observational data, any trends de-

rived from the early 20th should be taken with caution.

This clear signal of increase is coherent to the ob-

served warming at Mediterranean (Efthymiadis et al.,

2011) and global scale (IPCC , 2007). Also the increase

in DTR is consistent with the studies of Brunet et al.

(2007) and Klok and Klein Tank (2009) which detected

a positive trend of DTR over all of Spain and Europe,

respectively. Finally, note that the reconstructed series

show a lower rate of increase, also considering the anal-
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of-sample predictions, whereas the grey bands indicate the
2.5th and 97.5th percentiles of these 1000 values. The poten-
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ysis for the more recent decades. The results obtained in

the second and shorter period should be more reliable.

Observatory Tmax Tmin DTR
Ebre1905−2008 0.25 (0.16) 0.06 (0.06) 0.19 (0.12)
Ebre1950−2008 0.30 (0.21) 0.07 (0.05) 0.23 (0.17)
Fabra1914−2008 0.20 (0.17) 0.11 (0.11) 0.09 (0.06)
Fabra1950−2008 0.38 (0.30) 0.22 (0.18) 0.15 (0.09)

Table 5 Trend analysis results for Tmax, Tmin and DTR
(bottom) original and reconstructed (in parenthesis) series of
Fabra and Ebre observatories, considering the entire available
period of the series (respectively 1914-2008 and 1905-2008)
and the period 1950-2008. Units are ◦C/10y. Pvalue ≤ 0.05.

5 Conclusions

The main objectives of this paper were: (i) to test the

feasibility of a statistical technique, the Multiple Linear

pointwise Regression downscaling technique (MLR), to

downscale large scale reanalysis predictor fields (20CR

in our case) in order to test the homogeneity of local

temperature time series and reconstruct them, and (ii)

to analyse the temperature evolution in the last century

from two centennial observatories in the North-East of

Spain.

The MLR method constitutes an innovative approach

which can be complementary to the more standard ho-

mogeneity test protocols (Wijngaard et al., 2003). This

methodology was applied to two centennial observato-

ries, Fabra and Ebre, regarded as high quality stations

for climate studies in Spain, which do not have nearby

temperature series to compare with. The temperature

series used in this study span the respective periods,

1914-2008 and 1905-2008. For both stations the statis-

tical downscaling model has been calibrated and inde-

pendently tested over the reliable periods with good re-

sults. Specifically, we have positively tested the method

to reproduce those values omitted from the calibration.

This suggests that the MLR method is able to recon-

struct the local temperature series.

The results indicate the feasibility of this method

both to detect potentially inhomogeneous regions of the

series and to reconstruct them. Indeed, our results are

in high agreement with the metadata of both observato-

ries which showed that, while for the Ebre station there

are no documented substantial variations in the sta-

tion environment during its anomalous period, while for

Fabra, the thermometer was in a non-homologated shel-

ter between 1978-1983. Finally, we applied this method

to reconstruct the interrupted period (1938-1939) of the

Ebre Observatory, obtaining a complete series for the

period 1905-2008.

The methodology introduced here is flexible and

adaptable with other reanalysis preserving the applica-

bility, simplicity and robustness of the technique (Ben-

estad et al., 2008). In this study we made use of the

large scale fields from the 20CR, the only available re-

analysis covering the entire 20th century. The consis-

tency between the observed data and the reanalysis

downscaled values gives some confidence not only to

the MLR method, but also on the quality of the 20CR

itself. However, since some concerns about its homo-

geneity in the first part of the 20th Century could be

raised, any trends derived from the early 20th should

be taken with caution.

For this reason we have tested the series for trends

considering the whole available period and the period
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since 1950. The trend analysis results point to a clear

signal of warming, with a larger rate of increase for the

maximum temperature (respect to the minimum one),

for the more recent decades and for the original series

(respect to the reconstructed ones). Regarding the on-

going controversy about the attribution of the nature of

the station inhomogeneities, our results show that it is

unlikely that they are driven by volcanic factors, espe-

cially in the Fabra case. In the Ebre observatory there

is no documented change in the station and the sus-

picious period is inside the error bands. Thus, further

studies are recommended to understand the nature of

its anomalous period.

In summary, these promising results strongly point

towards the possibility of establishing a new procedure

both to detect inhomogeneities and reconstruct anoma-

lous periods in a temperature time series without need-

ing nearby stations to compare with. It is the aim of fu-

ture studies to consolidate the methodology by means

of its application to other temperature series, to anal-

yse its applicability to other variables, considering other

reanalysis and other statistical downscaling techniques,

and explore the reconstruction of monthly means or

even daily data. In the case of reconstruction of monthly

means, the process should be quite straightforward (de-

veloping a model for each month), but with daily data

the effect of the autocorrelation of the time series de-

serves a deeper study.
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Segúı-Grau, J. (2003), Análisis de la Serie de Temper-

atura del Observatorio del Ebro (1894-2002), Tech.

rep., Observatori de l’Ebre, Roquetes (Tarragona).

Sturaro, G. (2003), A closer look at the climatological

discontinuities present in the NCEP/NCAR reanal-

ysis temperature due to the introduction of satellite

data, Climate Dynamics, 21 (3-4), 309–316.

Timbal, B., A. Dufour, and B. McAvaney (2003), An es-

timate of future climate change for western france us-

ing a statistical downscaling technique, Climate Dy-

namics, 20 (7-8), 807–823.

Timbal, B., E. Fernandez, and Z. Li (2009), General-

ization of a statistical downscaling model to provide

local climate change projections for Australia, Envi-

romental Modelling & Software, 24 (3), 341–358.

Toreti, a., F. G. Kuglitsch, E. Xoplaki, P. M. Della-

Marta, E. Aguilar, M. Prohom, and J. Luterbacher

(2010), A note on the use of the standard normal ho-

mogeneity test to detect inhomogeneities in climatic

time series, International Journal of Climatology, pp.

630–632.

Uppala, S., P. Kallberg, A. Simmons, U. Andrae,

V. Bechtold, M. Fiorino, J. Gibson, J. Haseler,

A. Hernandez, G. Kelly, X. Li, K. Onogi, S. Saari-

nen, N. Sokka, R. Allan, E. Andersson, K. Arpe,

M. Balmaseda, A. Beljaars, L. Van De Berg, J. Bid-

lot, N. Bormann, S. Caires, F. Chevallier, A. De-

thof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hage-

mann, E. Holm, B. Hoskins, L. Isaksen, P. Janssen,

R. Jenne, A. McNally, J. Mahfouf, J. Morcrette,

N. Rayner, R. Saunders, P. Simon, A. Sterl, K. Tren-

berth, A. Untch, D. Vasiljevic, P. Viterbo, and

J. Woollen (2005), The ERA-40 re-analysis, Quar-

terly Journal of the Royal Meteorological Society,

131 (612, Part B), 2961–3012.

Vincent, L. a. (1998), A Technique for the Identification

of Inhomogeneities in Canadian Temperature Series,

Journal of Climate, 11 (5), 1094–1104.

Von Neumann, J. (1941), Distribution of the ratio of

the mean square successive difference to the variance,

Annals of Mathematical Statistics, 13, 367–395.

Von Storch, H., and F. W. Zwiers (1999), Statistical

analysis in climate research, Cambridge University

Press, Cambridge.

Wijngaard, J., A. Klein Tank, and G. Können (2003),
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