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1 Observatori de l’Ebre (URL-CSI), Roquetes (Tarragona), Spain (pquintana@gencat.cat); 2 isardSAT, Barcelona, Spain

A comparative assessment of machine learning and a
multilayer physical model with data assimilation for

root-zone soil moisture estimation
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Introduction

Root-zone soil moisture (RZSM) is central to drought as-
sessment and irrigation management, yet it is difficult
to observe directly. We compare two approaches for es-
timating RZSM in vineyards: a multilayer perceptron
(MLP) and a parsimonious physical model with Ensemble
Kalman Filter (EnKF) assimilation. Using in-situ data
we evaluate how well each method reproduces RZSM. The
goal is to quantify the value of ingesting surface soil mois-
ture (SSM) observations and to contrast a data-driven
baseline with a physically constrained model.

Area of Study

The study focuses on the Terra Alta vineyard region (Cat-
alonia, NE Spain), an inland Mediterranean area with a
more continental climate. Mean annual precipitation is
∼464 mm, and the monitored vineyards are non-irrigated.

Terra Alta

Barcelona

Tarragona

Lleida

Girona

0° 1°E 2°E 3°E

0 25 50

km

Batea
Gandesa

HortaSantJoan

PoblaMassaluca

Soil moisture (non-irrigated)
Meteorological

Fig. 1: Study Area: Location of the Terra Alta vineyard region within Catalonia

(left) and spatial distribution of the 5 monitored stations (right).

Data

Meteorology is provided by SMC and AEMET. Soil mois-
ture is measured by METER Teros-10 probes at 5, 10,
25, 50, 70 cm. Observed RZSM is the weighted mean of
deep sensors (25–70 cm), representing the 15–75 cm inter-
val. Validation compares this monitored layer against the
corresponding model layers (full model profile is 150 cm).
We use daily data (2020–2025) from 5 non-irrigated Terra
Alta stations for training and validation.

Methodology

We compare two approaches to estimate RZSM from me-
teorological forcing and SSM:

� (1) A machine-learning (ML) approach based on amul-
tilayer perceptron (MLP) [4], ingesting SSM (MLP-
SSM) and not ingesting SSM (MLP-NOSSM).

� (2) A physical model based on FAO-56 dual crop co-
efficient [1] and a multi-layer soil (DC11L) with
optional EnKF assimilation [2].

The validation metric is the non parametric KGE
(KGEnp) [3] and a leave one out cross-validation
(LOOCV) method was used.
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Methodology (continuation)

Machine learning approach

The machine learning baseline uses a multilayer percep-
tron (MLP) to benchmark the physical model’s predic-
tive skill.

� Inputs: A 21-day window of P, T,ET0, plus SSM
for MLP-SSM.

�Target: Daily RZSM (and SSM) from in-situ obser-
vations.

�No leakage: SSM inputs are antecedent only (t−21
to t−1) for predicting day t.

Data assimilation approach

The Ensemble Kalman Filter (EnKF) assimilates SSM
into the multilayer physical model to improve RZSM
estimates.

�EnKF strategy: Ensemble layer states are forced
daily; SSM updates use the Kalman gain.

�Vertical coupling: Surface–root zone covariance
propagates information downward.

�Variants: perturbation of precipitation (EnKF-P),
transpiration (EnKF-KCB), and EnKF-BOTH.

Results
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Fig. 2: Daily root-zone soil moisture (m3 m−3) at HA1 site, showing observed

daily means and model simulations with and without SSM assimilation (RZSM

is the 15–150 cm mean).
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Fig. 3: Daily KGEnp boxplots (N=25 station-years; 5 stations over 2020–2025

with sufficient SSM). Each dot represents one validation year per site

(leave-one-out cross-validation).
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Fig. 4: Daily KGEnp components for the same N=25 station-years (correlation,

variability ratio, and bias ratio).

Results (continuation)

Model validation

Figure 2 indicates that reproducing root-zone soil mois-
ture with precision remains challenging, yet overall per-
formance is strong, as reflected by KGEnp scores (leg-
end). KGEnp medians are 0.45 for DC11L and 0.52
for MLP-SSM (IQRs 0.35–0.72 and 0.08–0.74, respec-
tively). The MLP exhibits higher short-term variabil-
ity (noisier trajectories), whereas the physical model is
overly smooth.

SSM data assimilation/ingestion

Boxplots (Fig. 3) show that both models perform rel-
atively well: DC11L has a median KGEnp of 0.45
and MLP-NOSSM 0.35 (medians are pooled across
all station-years). Ingesting SSM improves the perfor-
mance, as expected. The median KGEnp for EnKF-
BOTH is 0.61, and 0.52 for MLP-SSM. EnKF variants
are the best approaches.
The KGE component plot (Fig. 4) shows generally
strong correlations for both ENKF-BOTH and MLP-
SSM except for a few station-years. Variability ratios
cluster around 1 with a few high-variability cases, and
bias ratios are centered near 1 without a consistent
shift.

Conclusion

Both approaches provide useful RZSM estimates un-
der Mediterranean vineyard conditions. The physical
model is generally more stable and benefits clearly from
in-situ SSM assimilation, while the MLP offers a strong
data-driven baseline with competitive performance. To-
gether, they provide complementary pathways for opera-
tional RZSM monitoring and motivate integrating satel-
lite SSM products and extended validation across addi-
tional sites. A next step is to integrate satellite SSM and
regionalize model parameters to enable RZSM estimation
at any vineyard.

Perspectives

� Iterate on the MLP implementation and check if its
performance can be improved.

� Ingest downscaled satellite SSM products.

�Regionalize model parameters to evaluate perfor-
mance on non-instrumented vineyards.

�Check whether the EnKF can mitigate sparse pre-
cipitation observations.

�Assess irrigation recommendation potential across
the study area.
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